

SP400

一拖四量产程器使用手册

2024-09-08 Revision A1

SFLY[®]硕飞

SP400一拖四量产编程器使用手册

目录
第一章 简 介 1.1 性能特点3
第二章 编程器硬件 2.1 编程器主机
第三章 快速使用 3.1 软件安装
附录一 常见问题解答11
附录二 免责声明12
附录三 修订记录13

第一章 简介

SP400 是深圳硕飞科技推出的一款 SPI FLASH 专用一拖四量产型编程器,全面支持国内外各厂商的 SPI NOR FLASH、I2C EEPROM 等高速量产烧录。相比昂贵的通用型编程器,SP400 具有使用简单,经济高效的特点。

1.1 性能特点

硬件特点

- 一台编程器主机只需要一个 Type-C USB 接口供电以及通信, 连接简单可靠;
- 一台编程器主机含四个独立烧录单元,各单元之间互不影响,全异步烧录,极速高效;
- •专用工业级烧录接口,配合专用的烧录插座,稳定耐用;
- 每个烧录座都有一个独立红绿蓝三色 LED 指示灯,直观指示运行状态(BUSY,OK,FAIL);
- 烧录座不限制烧录次数,寿命到期可以自行更换座子,极大的节省使用成本;
- •智能探测芯片放置与移除,自动烧录,无需按键操作;
- 支持常用串行存储器,包括 SPI NOR FLASH, I2C EEPROM 等---详见芯片支持列表;
- 支持芯片电压从 1.7V 到 5V(含 1.8V, 2.5V, 3.3V, 5V 等), 根据芯片型号自动程控设定;
- 支持芯片容量从 1K-bit 到 512M-bit;
- CNC 铝合金外壳,坚固美观,体积小巧,占用极低的工作台面;

软件特点

- 支持 Win7/Win8/Win10/Win11, 32&64 位系统;
- 支持中英文界面切换;
- 支持软件升级增加新器件;
- •支持工程文件管理(工程文件保存所有烧录参数,包括:芯片型号,数据文件,烧录设置等);
- 支持芯片附加存储区(OTP 区域)和配置区域(状态寄存器等)的读写;
- 支持 25 系列 SPI FLASH 的自动识别;
- 支持一台电脑连接两台编程器主机(达到8个烧录单元),可实现:擦除,编程,读取,校验等标准操作;
- 支持日志文件保存;

SFLY®硕飞

第二章 编程器硬件

2.1 编程器主机

主机尺寸: 168x100x28 mm 重量: 380 克)

编号	名称	说明			
1	USB 接口 USB Type-C 接口(USB2.0)				
2	电源指示灯	编程器和电脑连接正常后,电源指示灯会点亮			
③ 烧录座接□		安装 SP400 专用烧录座,一台主机可以安装 4 个烧录座			
U		(注: 不支持从烧录座接口引线的方式烧录和读取芯片)			

2.2 附件

Type-C 数据线

	/ ロロバッジ ト Warranty Card
用户姓名	联系电话
Jser Name :	User Telephone :
产品型号	产品序号
Acidel Number:	Serial Number :
购买日期	经销商签章
Purchasing Date :	Dealer Name :
. 缺紧座烧录座等损耗件不在保修	(责任内;
. 人为损坏、自行拆修、拆封标、	使用不当等,不在保修责任内;
. 产品(含软件和资料)缺陷和错;	误造成的直接、间接、扩展等报害不在责任内。
	深圳硕飞科技有限公司 地址:深圳市龙岗区龙岗路15号 电话:0755-84867757

保修卡

● 编程器标配不含烧录座,请根据您需要烧录的芯片封装来选配。

第三章 快速使用

本章以 SOIC8(208mil) 封装的 SPI FLASH 芯片 "GD25Q127C"为例来介绍 SP400 编程器批量烧 录芯片的方法,常规的烧录包含以下 5 个步骤:

软硬件准备 🔿 选择芯片型号 📫 加载烧录文件 📫 操作选项设置 📫 烧录

3.1 软件安装

1)安装 SP400 编程器软件(内含 USB 驱动,安装软件时默认会同时安装 USB 驱动程序),支持 Win7/Win8/Win10/Win11,请前往硕飞官网下载:<u>https://www.sflytech.com/html/2956171742.html</u>

2)用 Type-C 数据线连接编程器到电脑 USB 端口,连接正常编程器红色灯点亮;

3) 启动编程器软件,软件自动连接编程器,连机成功软件右边窗口显示编程器型号和序列号。下图表示 编程器的 4 个独立烧录单元已正常连接,一台编程器可以同时连接 2 台编程器,实现 8 个单元同时烧录。

4)安装烧录座:SOIC8(208mil)封装的芯片对应的烧录座型号是"SF04-SOP8-200A",安装好后,烧录座上的红绿蓝三色指示灯亮绿色。烧录座接口有防呆设计,不会插反。

3.2 烧录芯片步骤

1)选择芯片型号**:**

点击工具栏 🛱 型号 按钮,在"选择芯片型号"对话框中搜索要烧录的芯片型号"GD25Q127C", 选定匹配的芯片品牌、型号和封装类型(品牌和型号选错将导致烧录失败)。

选择芯片型号						×
搜索	芯片厂商	~	芯片型号	封装类型	适配座/烧录方式	
GD25Q127C	GigaDevice		GD25Q127C	SOP8-208	SF04-SOP8-200A	
送刑			GD25Q127C	VSOP8-208	SF04-SOP8-200A	
			GD25Q127C	WSON8(6x5)	SF04-QFN8-6X5A	
			GD25Q127C	WSON8(8x6)	SF04-QFN8-8X6A	
○ SPI FLASH/EEPROM			GD25Q127C	SOP16	SF04-SO16-300A	
O I2C EEPROM						

2)加载文件:

	查找范围(I):	Programmina 名称 副TestData(1 副TestData(1	Data ^ MB).bin	~ 3		
	快速访问	名称 副 TestData(1 副 TestData(1)	^ MB).bin		修改日期	
Ø			6MB).bin		2021/11/5 8:42 2021/1/4 9:05	
	(学) 网络	< 文件名(№): 文件类型(T):	All files (*.*)		 ✓ 打开((✓ 取消)
		库 此电脑 网络	库 此电脑 の路 文件名(N): 文件名式: 加載前書空缓冲	库 此电脑 ● ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	库 山电脑 砂 の塔 マ件名(N): 文件名(N): 文件名(N): 文件表型(T): All files (*.*) 文件格式: 自动识别 文件 な件格式: 自动识别 文件	库 此电脑 ◎ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

软件支持的文件格式:

Binary: 二进制文件, 默认后缀"bin"

Intel Hex: Intel 十六进制格式,默认后缀"hex"

软件支持文件格式自动识别,如采用自动识别方式加载的文件格式不对,或加载错误,请手动选择指定的 格式。

SP400一拖四量产编程器使用手册

3) 操作选项设置:

在软件主窗口"操作选项"页进行相应的设置。提示:烧录区域根据您的烧录项目功能需要选择,非空芯 片需加上擦除选项。

□ 操作选项 □ 芯片信息	
烧录区域:	如果需要烧录 C 区域 (芯片配置区域),
A: FLASH (128M-bits)	则勾选 C 区域外,还需要点击此按钮打
B: Security Register (3x1024 Bytes)	开"配置选项"进行相应的设置(配置
🗆 C: Status Register 🛛 😭 🦳	参数由用户的项目要求来决定)
自动/批量操作:) -
✓引脚接触检测	
速度(时钟频率): 中 ~	

烧录区域说明

A: 主存储区 芯片的默认存储区。

B: 附加存储区 芯片额外的存储区域, 例如 OTP 区域, 安全阵列等。

部分芯片此区域为 OTP 特性,不支持擦除操作,只能编程一次,其一旦被编程,便不可修改,因此需谨 慎处理。

C: 配置区域 配置区域对应芯片的配置寄存器、状态寄存器等。

点击右侧的 🔄 图标可设置、查看当前芯片的配置参数。

4)放置芯片:

在烧录座内放入要烧录的芯片,注意芯片方向不要放错,烧录座上有"Pin1"标识,标识芯片 1 脚放入的方向。

5) 烧录操作:

烧录操作可以采用三种模式:包括自动模式、批量模式、手动模式。根据不同的需要选择其中一种模 式进行操作。编程器所有操作通过菜单或工具栏按钮实现,下图是工具栏操作按钮:

自动擦	作按钮	手动搏	操作按钮	
🕨 自动 🚺 批量	芯片放置 🔹	i 🖉 🗘 🛛	9 🕑 🧐	₽ 🏂 🕐
自动 批量操作	启动方式 停止排	墙 查空	校验	
· · · · · ·		擦除编	程 读取	
📑 操作选项 📓] 芯片信息			
烧录区域:		-		
A: FLASH (128M-	bits)			
B: Security Regist	ter (3x256 Bytes)			
C: Status Registe	r 📑	•		
自动/批量操作:	编程(P) + 校验(V)	·		.

SP400一拖四量产编程器使用手册

自动烧录 自动 点击工具栏 按钮,自动运行一次"操作选项"页的"自动/批量操作"内容: 🌄 多机模式 S/N: 182106274-1 [#2] S/N: 182106274-2 [#3] S/N: 182106274-3 S/N: 182106274-4 [#1] [#4] 00001 00001 00001 00001 00000 00000 600000 63 00000 编程 [FLASH].. 编程 [FLASH].. 编程 [FLASH].. 编程 [FLASH]..

烧录完成,状态图标变为"OK"表示烧录成功,每个烧录单元可以单独查看成功与失败的次数。

▶ 多机模式						
[#1] S/N: 182106274-1	[#2] S/N: 182106274-2	[#3] S/N: 182106274-3	[#4] S/N: 182106274-4			
○ 00002○ 00000○ 00000	 ○ 00002 ○ 00000 	● 00002 ● 00000				

批量烧录:

点击工具栏 📃 停止按钮,可以退出批量烧录模式。

手动烧录:

点击手动操作按钮可以单独执行擦除、查空、编程、校验、读取操作。

擦除

用于清空芯片内的数据,仅适用于 FLASH 类的芯片。

擦除操作只针对芯片的主存储区(A)和附加存储区(B),因此"操作选项"中的"烧录区域"必须选择 A 或 B 至少其中一项。

如果当前芯片的附加存储区(B)为 OTP 特性,则不支持擦除操作,软件将忽略处理。

查空

用来检查芯片是否为空白(全部为 FFh)。

查空操作只针对芯片的主存储区(A)和附加存储区(B),因此"操作选项"中的"烧录区域""必须选择 A 或 B 至少其中一项。

编程

即写入操作,将缓冲区内的数据写入到芯片内。写入之前,部分芯片需要先进行清空(执行擦除操作), 否则写入将有可能失败。

在执行写入之前,缓冲区必须包含有合适的数据。该数据可以通过加载文件得到。

为保证芯片烧录的正确性,在"编程"操作完成后,必须执行"校验"操作,否则无法保证芯片内的数据 与缓冲区数据完全一致。

SFLY[®]硕飞

校验

验证芯片数据与缓冲区数据是否相同;如果"操作选项"中的"烧录区域"有选择配置区域(C),则会验 证芯片的配置数据与当前的配置设置是否相同。

读取

读取芯片内容。

3.3 复制芯片数据

- 1)按3.2节的步骤选择好芯片型号、安装好烧录座和待读取的芯片。
 - 提示:
 - ① 可以通过工具栏"检测型号"按钮 🔯 自动识别大部分 SPI Flash 芯片(待识别芯片需要放置 在第一个烧录座内,即靠近 USB 接口的烧录座);
 - ② 拆焊过的芯片需要将引脚清理干净,避免接触不良;

2) 点击工具栏读取按钮 🥨 , 弹出"读取选项"对话框,根据程序需要选择"读取区域",如果是用 来复制母片数据,可选择读取所有内容;

编程器:	[#1] S/N:182106274-1	~	
读取区域 v 读取所 [;] v A: FLAS v B: Secur v C: Statu	有内容 H (128M-bits) ity Register (3x1024 Bytes) is Register	根据芯片所在的烧录一次只能读取其中一	单元选择, 片
 ✓ 读取后再材 ○ 读取后打り 	_{交验} 干数据 确定	取消	

芯片主存储区(A)和附加存储区(B)将保存到数据缓冲区,数据缓冲区原来的数据会被覆盖。后续可以使用 "保存数据"按钮将缓冲区数据保存到文件。

芯片配置区域(C)数据将更新到项目的配置设置。可通过"操作选项"页->"烧录区域"->"配置区 域"后面的图标按钮,查看配置信息。

提示:

必须勾选"读取后再校验",校验成功才表示成功读取了芯片的数据。

3)点击菜单【文件】--【保存文件】或者工具栏保存按钮 🔚 , 在弹出的文件对话框中选择要保存的路 径和文件名,弹出保存数据对话框,默认保存全部存储区,可以根据需要选择存储器区如主存储器区 Flash, 保存后的文件可以后续使用;

📅 另存为		×	
保存在(I): 📒 烧录数据	✓ Ø	🏚 📂 🛄 -	
名称 主文件夹 Test.bin	^	修改日期 2023/12/12 星期二 10:22	
 桌面			
库 库			
此电脑			
	123	✓ 保存(S)	可选择要保存的存储区:
保存类型(I):	Binary (*. bin)		Security Register (3x1024 Bytes) 自定义区域
保存区域:	全部 开始地址: h 结	下来地址: <u>1000BFF</u> h	

- 5) 取出母片, 放入一片新的同型号芯片;
- 6) 点击 🕨 自动 按钮,即可将读取的内容写入新的芯片。

提示:

- 操作选项中的烧录区域请选择全选,否则可能造成烧录的数据不完整而出现母片工作正常,复制的芯 片无法正常工作;
- ② 设置好烧录参数或者成功读取母片的烧录数据后,可以保存为项目文件(点击工具栏 按钮,或者点击菜单栏:文件->保存项目),后续只需加载保存的项目文件,无需重新设置烧录参数即可烧录新的芯片。

3.4 烧录座三色指示灯状态说明

指示灯状态	状态说明			
蓝色长亮	忙碌状态,编程器正在执行擦除、编程、校验等烧录操作			
蓝色闪烁	<u>穿待芯片放入</u>			
绿色长亮	当前为待机状态,或者是当前芯片烧录成功			
红色长亮	ふ片烧录操作失败(在软件信息窗口可以查看失败原因)			

附录一 常见问题解答

编程器能否烧录 img 文件?

SFLY®硕飞

- 编程器软件可以支持的文件编码格式为二进制(binary)和十六进制(Inter HEX)格式,二进制文件 常规后缀为*.bin,十六进制文件常规后缀为*.hex;
- img 只是一个文件后缀,不代表文件编码格式,通常情况(90%以上)此类文件为二进制编码,在软件中直接加载即可,软件会自动识别文件是否为二进制编码,并以识别到的格式进行加载;
- 为保证文件加载的准确性,我们建议使用者在加载此类文件后,与工程技术人员(或文件代码提供者 /客户等)核对缓冲区校验和以及文件校验和(在烧录器软件的主窗口下方会有这些信息的显示)。

🕐 烧录失败 (含擦除失败/编程失败/校验失败/ID 错误等) 的常见原因?

- 软件中选择的芯片厂商/型号和实际芯片不符;
- 芯片方向放错,芯片管脚和烧录座接触不良;
- 通过烧录座飞线方式连接其他电路板上已经焊接好的芯片,因电路干扰造成烧录失败,此种错误方式 可能导致编程器严重损坏且得不到保修服务,请将芯片放回烧录座烧录;
- 芯片可能已经损坏,更换新的芯片测试。

🙂 为什么 24 系列芯片没有擦除功能?

- 该芯片基于 EEPROM 技术,芯片数据可以直接改写而无需预先擦除,因此没有可用的擦除操作;
- 如需清空芯片数据,请直接对芯片写入 FFH 数据即可。

🙂 如何升级编程器软件和固件?

- 点击编程器软件菜单:帮助-检查更新,如有更新,会弹出更新向导,按照提示完成升级;
- 进入硕飞官网(http://www.sflytech.com)下载中心,下载最新的编程器软件安装即可;
- 只需要升级编程器软件,如果需要升级固件,软件会自动完成,无需人工干预。

… 编程器软件中没有要烧录的芯片型号怎么办?

- 首先升级编程器软件到最新版;
- 如最新版软件中也没有要烧录的芯片型号,请按硕飞官网的添加芯片指引发邮件申请: 申请添加新的 芯片型号

附录二 免责声明

深圳硕飞科技有限公司尽最大努力保证产品及其相关软件、资料的正确性,对于可能存在的产品(含软件及相 关资料)缺陷和错误,本公司将尽商业和技术所能尽力解决问题。本公司不承担因使用或销售本产品而产生的 各类偶然的、必然的、直接的、间接的、特别的、扩展的或惩罚性的损害,包括但不限于利润、商誉、可用性 消失、业务中断、资料损失等,不承担任何直接、间接、附带、特别、衍生、惩罚性赔偿及第三方索赔。

附录三 修订记录

发布日期	版本	修订人	说明
2024-09-08	A1	Sauwa	初版